Intranet

INSTITUTE OF PHYSIOLOGY CAS

Cutting-edge science for health

Laboratory of Membrane Transport

Laboratory of Membrane Transport Sodium and potassium transporting protein observed in yeast cells through a fluorescence microscope. Green fluorescence corresponds to the protein localized in the cell plasma membrane; red fluorescence visualizes membranes of vacuoles.

We study the proteins transporting compounds and signals across the cell membranes. These proteins, called transporters, assure the uptake of nutrients into the cells, efflux of waste compounds from cells and communication with the environment.  To study the animal and plant transporters, we mainly use a model eukaryotic microorganism – yeasts. Our research is focused mainly on:

  • Structure, function and regulation of cell transport systems at protein molecule level.
  • Role of transporters in specific cell properties and in diseases.
  • Role of transporters in Candida virulence and pathogenicity.
  • Development of new techniques to estimate cell physiological parameters.

Projects

Cell cation and pH homeostasis

The intracellular concentration of potassium and sodium cations, as well as of protons, is strictly regulated via the activity of a series of membrane proteins that mediate the flux of cations and protons with various transport mechanisms. Incorrect functioning of some transporters results in serious disorders and diseases. We study in detail the roles of individual transporters and the impact of their activity on cell fitness. More

Transporters of pathogenic yeasts as targets for new antifungal drugs

Some of the transporters existing in the membranes of pathogenic Candida species differ by its structure and activity from those of the host organism. These transporters thus may serve as targets for the development of new antifungal drugs that will affect yeast cells but not cells of the host. More

Transporters reflected in specific properties of nonconventional yeasts

Some yeast species survive extreme changes in the environmental pH, temperature or osmotic pressure. We aim to identify and characterize specific transporters whose activity contributes to the ability to survive adverse environmental conditions. Acquired knowledge will help to improve the properties of yeast species used in industrial processes. More

Achievements

Participation in project "Otevřená věda"

Our laboratory is already for many years involved in project Otevřená věda organised by Czech Academy of Sciences. The mission of this successful project is to lure enthusiastic students from secondary schools and show them how amusing the science can be. More

The best poster award for Klara Richerova

Klara Richterova is the author of award-winning poster at 6th Czech-Swiss symposium BioTech 2014. The work with name „Heterologous expression of three laccases from different source of origin in yeast Saccharomyces cerevisiae and their use for environmental application.“ was born in collaboration with Institute of Organic Chemistry and Biochemistry AS CR. Congratulation!  More

Publications

Deschamps; A. - Colinet; A. S. - Zimmermannová; Olga - Sychrová; Hana - Morsomme; P. A new pH sensor localized in the Golgi apparatus of Saccharomyces cerevisiae reveals unexpected roles of Vph1p and Stv1p isoforms . Scientific Reports. 2020; 10(1)); 1881 . IF = 3.998 [ASEP] [ doi ]
Csáky; Z. - Garaiová; M. - Kodedová; Marie - Valachovič; M. - Sychrová; Hana - Hapala; I. Squalene lipotoxicity in a lipid droplet-less yeast mutant is linked to plasma membrane dysfunction . Yeast. 2020; 37(1); 45-62 . IF = 3.143 [ASEP] [ doi ]
Zimmermannová; Olga - Felcmanová; Kristina - Rosas-Santiago; P. - Papoušková; Klára - Pantoja; O. - Sychrová; Hana . Erv14 cargo receptor participates in regulation of plasma-membrane potential; intracellular pH and potassium homeostasis via its interaction with K+-specific transporters Trk1 and Tok1 . Biochimica Et Biophysica Acta-Molecular Cell Research. 2019; 1866(9); 1376-1388 . IF = 4.105 [ASEP] [ doi ]
Zemančíková, Jana - Papoušková, Klára - Peréz-Torrado, R. - Querol, A. - Sychrová, Hana . Stl1 transporter mediating the uptake of glycerol is not a weak point of Saccharomyces kudriavzevii's low osmotolerance . Letters in Applied Microbiology 2019, 68(1), 81-86 . IF = 2.173 [ASEP] [ doi ]
Šoltésová; M. - Elicharová; Hana - Srb; P. - Růžička; Michal - Janisova; Larisa - Sychrová; Hana - Lang; J. Nuclear magnetic resonance investigation of water transport through the plasma membrane of various yeast species . FEMS Microbiology Letters. 2019; 366(18)); fnz220 . IF = 1.987 [ASEP] [ doi ]